skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCormack, Scott J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:(i)Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii)formation of oxygen/oxygen vacancy complexes(iii)ordering/disordering of oxygen vacancies and/or(iv)oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity. 
    more » « less
  4. Details of the carbothermic reduction/nitridation to synthesize hafnium nitride (HfN) and hafnium carbide (HfC) are scarce in the literature. Therefore, this current study was carried out to evaluate two pathways for synthesizing these two refractory materials: direct nitridation and carbothermic reduction/nitridation. Two mixtures of hafnium dioxide and carbon with C/ HfO2 molar ratios of 2.15 and 3.1 were nitridized directly using flowing nitrogen gas at elevated temperatures (1300−1700 °C). The 3.1 C/HfO2 molar ratio mixture was also carbothermically reduced under flowing argon gas to synthesize HfC, which was converted into HfN by introducing a nitridation step under both N2(g) and N2(g)-10% H2(g). X-ray diffraction results showed the formation of HfN at 1300 and 1400 °C and HfC1−yNy at ≥1400 °C under direct nitridation of samples using a C/HfO2 molar ratio of 2.15. These phase analysis data together with lower lattice strain and greater crystallite sizes of HfC1−yNy that formed at higher temperatures suggested that the HfC1−yNy phase is preferred over HfN at those temperatures. Carbothermic reduction of 3.1 C/HfO2 molar ratio samples under an inert atmosphere produced single-phased HfC with no significant levels of dissolved oxygen. Carbothermic reduction nitridation made two phases of different carbon levels (HfC1−yNy and HfC1−y′Ny′, where y′ < y), while direct nitridation produced a single HfC1−yNy phase under both N2 and N2-10% H2 cover gas environments. 
    more » « less
  5. AbstractThere is an ever-increasing need for material systems to operate in the most extreme environments encountered in space exploration, energy production, and propulsion systems. To effectively design materials to reliably operate in extreme environments, we need an array of tools to both sustain lab-scale extreme conditions and then probe the materials properties across a variety of length and time scales. Within this article, we examine the state-of-the-art experimental systems for testing materials under extreme environments and highlight the limitations of these approaches. We focus on three areas: (1) extreme temperatures, (2) extreme mechanical testing, and (3) chemically hostile environments. Within these areas, we identify six opportunities for instrument and technique development that are poised to dramatically impact the further understanding and development of next-generation materials for extreme environments. Graphical abstract 
    more » « less
  6. High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields, which can result in miscommunication of important aspects of research. In this Perspective, we provide examples of research and characterization taken from these different fields to provide a framework for classifying the differences between compositionally complex oxides, high entropy oxides, and entropy stabilized oxides, which is intended to bring a common language to this emerging area. We highlight the critical importance of understanding a material’s crystallinity, composition, and mixing length scales in determining its true definition. 
    more » « less
  7. Characterization of the thermal expansion in the rare earth di-titanates is important for their use in high-temperature structural and dielectric applications. Powder samples of the rare earth di-titanates R 2 Ti 2 O 7 (or R 2 O 3 ·2TiO 2 ), where R = La, Pr, Nd, Sm, Gd, Dy, Er, Yb, Y, which crystallize in either the monoclinic or cubic phases, were synthesized for the first time by the solution-based steric entrapment method. The three-dimensional thermal expansions of these polycrystalline powder samples were measured by in situ synchrotron powder diffraction from 25°C to 1600°C in air, nearly 600°C higher than other in situ thermal expansion studies. The high temperatures in synchrotron experiments were achieved with a quadrupole lamp furnace. Neutron powder diffraction measured the monoclinic phases from 25°C to 1150°C. The La 2 Ti 2 O 7 member of the rare earth di-titanates undergoes a monoclinic to orthorhombic displacive transition on heating, as shown by synchrotron diffraction in air at 885°C (864°C–904°C) and neutron diffraction at 874°C (841°C–894°C). 
    more » « less